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A one-dimensional finite element model to study the effect 

of advection on calcium dynamic in Cardiac Myocyte Cell 
 Payal Desai A1, Kunal Pathak B 

 

ABSTRACT - Cardiac myocytes cells are the cell which are 

responsible for the expansion and contraction of heart. Specific 

calcium dynamics requires for these expansion and contraction 

mechanism. which is still not understood clearly. Hence, a one-

dimensional finite element model is proposed in this paper to examine 

the effect of advection on calcium dynamics. In this model, different 

processes such as buffering, the reaction of calcium ions with excess 

buffers, diffusion of calcium ions, advection and source influx are 

considered to study individual and coordinated effects of advection on 

calcium dynamics. Significant initial and boundary conditions based 

on the biophysical properties of the region have been proposed. A 

program in MATLAB has been developed for the whole problem and 

simulated to figure out the numerical results. The individual and 

coordinated effects of source influx, advection, buffering, diffusion on 

calcium ions in cardiac myocytes cells are studied and presented here. 

Key Words: Reaction diffusion equation, finite element method, 

Advection, cardiac myocytes, source influx, excess buffers. 

 

I. INTRODUCTION 

 Heart is the main organ which is responsible for circulating the 

blood to different parts of the body. The smooth blood circulation is 

very much necessary for balancing the structure and functions of the 

different body parts. Calcium dynamics plays a critical part in 

contraction expansion of Heart, which leads to proper circulation of 

blood in the body. 

 

Figure 1: Mechanism of contraction process in the Cardiac myocyte 

cell 

 The contraction of the cardiac myocytes takes place when the 

intracellular binding proteins (Troponin C) that are present in the cell 

gets bind with the calcium ion as shown in Figure 1. The expansion of 
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the cardiac myocytes takes place when the bonded protein gets 

separated with the calcium ion. Smith G.D et al1. The regulation of 

calcium gets maintained by different processes like source influx, 

diffusion, excess buffer, advection etc. There are two possibilities for 

the advection of the calcium ions inside the cells, may be one of them 

is due to the mechanical contraction which happens on the surface of 

the cell or another one is due to the appropriate transportation of the 

material through cytosolic fluid. In the cytoplasm of the cell, a cross 

flow of the calcium takes place due to the advection process. Panday 

S. et al2, Jha B. K. et al3. The specific mechanism that takes place in 

the regulation of calcium dynamics is not yet understood clearly. 

Although there are many attempts carried out to examine the amount 

of calcium distribution in the different cells like neuron cells, fibroblast 

cells, astrocyte cells, acinar cells, Oocyte cells etc. are reported in the 

literature survey, Jha A et al4, Jha B. K. et al5,6, Kotwani M. et al7,8, 

Manhasn N. et al9,10,11, Naik P. et al12,13, Pandey S. et al14, Tewari 

S. et al15,16. However, in order to study and examine the regulation of 

calcium ions in the myocyte cells, very less attempts are mentioned 

and reported in the literature survey, Backx P H. et al17, Luo C H. et 

al18, Michailova A. et al19. Amongst the very few reported studies on 

the regulation of calcium ions in the myocyte cells, most of them are 

experimental studies. Michailova A. et al19, Shannon T R. et al20. 

Researchers have carried out some attempts of research works in order 

to study and understand the effect of advection and diffusion in 

Oocytes and astrocytes, Jha B. K. et al21, Pandey S. et al2. While none 

or very less attempts are mentioned and reported in literature to study 

the effect of advection on calcium regulation in the myocyte cells. No 

or very few attempts have been studied or reported in the past to 

examine and study the regulation of calcium dynamics in the 

individual or coordinated effect of advection, buffer, diffusion and 

source influx. So, in this paper, to study the coordinated and individual 

effect of source influx, buffer, advection, diffusion on calcium 

dynamics in cardiac myocyte cells a model is proposed for a one-

dimensional unsteady state case. Numerical simulation has been 

carried out using the finite element approach. 

II. MATHEMATICAL BACKGROUND 

The reaction equation of calcium containing buffer is considered 

as 

2 k

i i
k

Ca B Ca B
+

−

+ ⎯⎯→+ ⎯⎯
                                         (1)                                                  

Where 𝐶𝑎𝐵𝑖 and 𝐵𝑖 are bound and free buffers respectively, 

‘i’ is an index over the species of buffer. Smith G.D et al1, Pandey S. 

et al2. 𝑘𝑖
− and 𝑘𝑖

+ are dissociation and association rate constants 

respectively for ‘i’. The advection diffusion equation considering mass 

action kinetic law and Flicks’ law of calcium concentration for reaction 

given by equation (1) in the polar cylindrical coordinates for one 
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dimensional unsteady state in presence of excess buffer can be stated 

as Smith G.D et al1, Pandey S. et al2. 

𝜕

𝜕𝑟
(𝑟

𝜕[𝐶𝑎2+]

𝜕𝑟
) −

𝑉

𝐷𝐶𝑎
(𝑟

𝜕[𝐶𝑎2+]

𝜕𝑟
) − ∑ 𝑟𝑘𝑖

+[𝐵𝑖]∞([𝐶𝑎2+] −𝑖

[𝐶𝑎2+]∞) = 𝑟
𝜕[𝐶𝑎2+]

𝜕𝑡
                                                         (2)                                               

where - 

      [𝐵𝑖]∞ =
𝐾𝑖[𝐵𝑖]𝑇

𝐾𝑖+[𝐶𝑎2+]∞
                                             (3)                                                                                   

and 

      [𝐶𝑎𝐵𝑖]∞ =
[𝐶𝑎2+]

∞
[𝐵𝑖]𝑇

𝐾𝑖+[𝐶𝑎2+]∞
                                               (4)                                                                        

where [𝐶𝑎2+]∞ is the free background 𝐶𝑎2+ concentration. [𝐵𝑖]∞ and 
[𝐶𝑎𝐵𝑖]∞ are used for denoting the equilibrium concentrations of free 

and bound buffer to cause around 50% of buffer in calcium bound form 

with respect to index ‘i’. [𝐵𝑖]𝑇 is the total buffer concentration in the 

cell. Jha A et al4.  𝐾𝑖 is the dissociation constant. V denotes the velocity 

of cytosolic calcium ion due to advection. Smith G.D et al1. 𝐷𝐶𝑎 is the 

coefficient of diffusion. [𝐶𝑎2+] represents the calcium concentration. 

Due to L-type calcium gated channel, the value at point source is 

assumed to be 𝑟 = 0.01𝜇𝑚 at the first node. Hence, the suitable 

boundary condition can be taken as Shannon T R. et al20 

         lim
𝑟→0+

(−2𝜋𝐷𝐶𝑎𝑟
𝜕[𝐶𝑎2+]

𝜕𝑟
) = 𝜎𝐶𝑎                             (5)                                                            

Here an influx of free 𝐶𝑎2+ is taken at the rate 𝜎𝐶𝑎 by Faraday’s law 

Jha A et al21, Luo C H. et al22, 𝜎𝐶𝑎 =
I𝐶𝑎

𝑧𝐹
, where I𝐶𝑎, z and F are 

amplitude of 𝐶𝑎2+release, valence of calcium ion and Faraday’s 

constant respectively. Considering the background concentration of 

𝐶𝑎2+as 0.1𝜇𝑀 on the boundary of the cell 𝑟 = 7.8𝜇𝑚 Luo C H. et 

al18, Jha A et al21. 

         lim
𝑟→7.8

[𝐶𝑎2+] = [𝐶𝑎2+]∞ = 0.1 𝜇𝑀                     (6)                                                              

Now applying the method of finite element approach to solve the 

equation (2) with the given boundary conditions equations (5) and (6). 

Initially the calcium concentration is considered as 0.1μM at t = 0 

second. 

 Consider the discretization of finite element in one-dimension which 

is given below by the figure 1, 

Figure 2: Discretization of finite elements in one dimension 

Here 𝑗𝑖 is the 𝑖𝑡ℎ element and 𝑟𝑖 and 𝑟𝑖+1 denotes the initial and final 

nodes of 𝑖𝑡ℎ element. 

The discretized variational form of integral of equation (2) is given by 

       𝐼(𝑗) =
1

2
∫ [𝐽1

(𝑗)
− 𝐽2

(𝑗)
+ 𝐽3

(𝑗)
− 𝐽4

(𝑗)
] 𝑑𝑟− [

𝜎𝐶𝑎

2𝜋𝐷𝐶𝑎
𝑦(𝑗)]

𝑟𝑖

𝑟𝑖+1𝑟𝑖+1

𝑟𝑖
         

                                                                                              (7)                
where 

       𝐽1
(𝑗)

= 𝑟 (
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)

2

−
𝑉

𝐷𝐶𝑎
[2𝑟𝑦(𝑗) (

𝜕𝑦(𝑗)

𝜕𝑟
)] +

𝑉

𝐷𝐶𝑎
(𝑦(𝑗))

2
 

       𝐽2
(𝑗)

=
𝑘+[𝐵]∞

𝐷𝐶𝑎

 𝑟(𝑦(𝑗))
2
 

       𝐽3
(𝑗)

=
2𝑘+[𝐵]∞

𝐷𝐶𝑎

 𝑟 𝑦∞𝑦(𝑗) 

       𝐽4
(𝑗)

= 𝑟 (
𝜕𝑦(𝑗)

𝜕𝑡
)

2

 

Here ‘y’ is used in place of  [𝐶𝑎2+] for the convenience in the 

calculation, 𝑗 = 1,2,3, … ,𝑁 (number of elements). 

Since each and every element is of very small thickness, 𝑦(𝑗) is 

assigned linear variation with respect to the position which is given by 

the following equation: 

     𝑦(𝑗) = 𝑐1
(𝑗) + 𝑐2

(𝑗)𝑟                                                                  (8) 

Rewriting equation (8) in the matrix form, we have 

     𝑦(𝑗) = 𝑃𝑇𝑐(𝑗)                                                                              (9)                                                                                             

where 

    𝑃𝑇 = [1    𝑟] and  𝑐(𝑗) = [
𝑐1

(𝑗)

𝑐2
(𝑗)

] 

At the nodal points 𝑟𝑖 and 𝑟𝑖+1 of the 𝑗𝑡ℎ element, 

    𝑦(𝑗)(𝑟𝑖) = 𝑦𝑖 = 𝑐1
(𝑗) + 𝑐2

(𝑗)𝑟𝑖                                                (10)                                                             

    𝑦(𝑗)(𝑟𝑖+1) = 𝑦𝑖+1 = 𝑐1
(𝑗) + 𝑐2

(𝑗)𝑟𝑖+1                                     (11)                                                       

From equations (9), (10) and (11) we have 

    𝑦̅(𝑗) = 𝑃(𝑗)𝑐(𝑗)                                                                  (12)                                                     

where 

    𝑃(𝑗) = [
1 𝑟𝑖
1 𝑟𝑖+1

] and 𝑦̅(𝑗) = [
𝑦𝑖

(𝑗)

𝑦𝑖+1
(𝑗)

] 

From equations (8) and (12) we have 

   𝑦(𝑗) = 𝑃𝑇𝑅(𝑗)𝑦̅(𝑗)                                                                     (13)                                               

where 

   𝑅(𝑗) = (𝑃(𝑗))
−1

=
1

𝑟𝑖+1−𝑟𝑖
  [

𝑟𝑖+1 𝑟𝑖
1 1

]. 

Now in equation (7), the integral mentioned can be also written in 

terms of nodal values as 

    𝐼(𝑗) =
1

2
∫ [𝐼1

(𝑗)
− 𝐼2

(𝑗)
+ 𝐼3

(𝑗)
− 𝐼4

(𝑗)
] 𝑑𝑟 − [

𝜎𝐶𝑎

2𝜋𝐷𝐶𝑎
𝑦̅(𝑗)]

𝑟𝑖+1

𝑟𝑖
  

                                                                                                        (14)                                  
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where 

   𝐼1
(𝑗)

= 𝑟 [(𝑃𝑇𝑅(𝑗)𝑦̅(𝑗))
2
] −

2𝑉

𝐷𝐶𝑎
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𝑉

𝐷𝐶𝑎
[(𝑃𝑇𝑅(𝑗)𝑦̅(𝑗))

2
], 

   𝐼2
(𝑗)

=
𝑘+[𝐵]∞

𝐷𝐶𝑎
 𝑟(𝑃𝑇𝑅(𝑗)𝑦̅(𝑗))

2
, 

   𝐼3
(𝑗)

=
2𝑘+[𝐵]∞

𝐷𝐶𝑎
 𝑟 𝑦∞(𝑃𝑇𝑅(𝑗)𝑦̅(𝑗)), 

   𝐼4
(𝑗)

= 𝑟
𝜕

𝜕𝑡
 (𝑃𝑇𝑅(𝑗)𝑦̅(𝑗))

2
. 

Now, minimising  𝐼(𝑗) with respect to 𝑦̅(𝑗), that is 

   
𝑑𝐼(𝑗)

𝑑𝑦̅(𝑗) = 0                                                                        (15)                                                                       

where 

    𝑦̅(𝑗) = [𝑦𝑖 𝑦𝑖+1]𝑇, for 𝑗 = 1,2,3, … , 𝑁 

𝑑𝐼(𝑗)

𝑑𝑦̅(𝑗)
= ∑ 𝑀̅(𝑗)

𝑑𝐼(𝑗)

𝑑𝑦̅(𝑗)

𝑁

𝑗=1

 (𝑀̅(𝑗))
𝑇
 

where 

𝑀̅(𝑗) =

[
 
 
 
 
0 0
1 0
0 1. .
. .

0 0]
 
 
 
 

((𝑁+1)+2)

 

Hence the above system of equations can be converted in the following 

system of linear equations: 

[𝐾]((𝑁+1)×(𝑁+1)) [
𝜕𝑦̅

𝜕𝑡
]
((𝑁+1)×1)

+

[𝐿]((𝑁+1)×(𝑁+1))[ 𝑦̅]((𝑁+1)×1) = [𝐹]((𝑁+1)×1)            (16) 

where 𝑦̅ = [𝑦1 𝑦2 . . . 𝑦𝑁+1]𝑇, K and L are the characteristic 

matrices and F is the characteristic vector. In order to solve and 

simplify the system of equations (16), method of Gauss elimination is 

carried out. For the solution and simulation of the entire problem, a 

MATLAB program in computer has been developed in the MATLAB 

R2021b on core i3 processor with 1.20GHz processing speed with 64-

bit machine and 237 GB memory. 

III. NUMERICAL RESULTS 

        For the numerical simulation, the values which are used for the 

biophysical parameters are mentioned as follows: Michailova A. et 

al19.  

Z represents the Valence of 𝐶𝑎2+ion, its value 2. F is Faraday’s 

constant, its value is 96500 C/mol. 𝐼𝐶𝑎 is used for Amplitude of 

elemental 𝐶𝑎2+release, which is 1pA. 𝐷𝐶𝑎 is used for Diffusion 

coefficient of free 𝐶𝑎2+in cytosol for Troponin C, its value is 780 
𝜇𝑚2

𝑠
. 

R is the Radius of the cell, whose value is 7.8𝜇𝑚.  

𝑘+ and 𝑘− are Association and Dissociation rate constant for 

𝐶𝑎2+binding of Troponin C whose values are 39 𝜇𝑀−1𝑆−1 and 20 𝑆−1 

respectively. K is Dissociation constant of Troponin C = 
𝑘𝑖

−

𝑘𝑖
+⁄ , its 

value is 0.51 𝜇𝑀. [𝐶𝑎]∞ is the intracellular free 𝐶𝑎2+concentration at 

rest, which is 0.1 𝜇𝑀. [𝐵1]𝑇 is Total concentration for each 𝐶𝑎2+buffer 

of Troponin C, which is 70 𝜇𝑀. 

 

Figure 3: Calcium concentration without and with advection at time 

t=0.01 sec. 

In Figure 3, the results are computed by considering 10 elements in 

finite element method. It has been observed that the concentration of 

calcium with advection increases than that of without advection at 

individual nodes. Initially, at 𝑟 = 0.01𝜇𝑚, the calcium concentration 

is 0.74867𝜇𝑀 and 0.74866𝜇𝑀 in the absence and presence of 

advection respectively. When we move little away from the source, a 

sharp fall is observed in the concentration. At  𝑟 = 0.78𝜇𝑚, the 

concentration is 0.1097𝜇𝑀and 0.1104𝜇𝑀 and little away from the 

source, the calcium concentration is 0.09990𝜇𝑀 and 0.09994𝜇𝑀 in the 

absence and presence of advection respectively at 𝑟 = 3.12𝜇𝑚.  When 

we further move away from the source the background concentration 

0.1𝜇𝑀 is achieved at 𝑟 = 7.566𝜇𝑚. Hence it is observed due to 

advection the calcium concentration increases. 

 

 

Figure – 4(a): Calcium concentration with advection at different 

time for source influx 1pA at different nodes. 
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Figure – 4(b): Calcium concentration with advection at different time 

for source influx 2pA at different nodes. 

 

Figure – 4(c): Calcium concentration with advection at different time 

for source influx 3pA at different nodes. 

In figures 4(a), 4(b) and 4(c), the calcium concentration by considering 

different time and source influx 1pA, 2pA and 3pA are shown in the 

presence of advection. Initially at time t=0 seconds, 0.1 𝜇𝑀 calcium 

concentration is observed due to the initial boundary condition, then at 

time 0.01 seconds the concentration obtains the peak value 0.7487 𝜇𝑀 

due to source influx. Then the sharp fall is observed in the 

concentrations at time 0.02 seconds at the nodes 2,3,4 and 5 which are 

0.1104𝜇𝑀, 0.098𝜇𝑀, 0.1005𝜇𝑀 and 0.0999𝜇𝑀 respectively for source 

influx 1pA. The concentrations observed at time 0.02 seconds at the 

nodes 2,3,4 and 5 are 0.1208𝜇𝑀, 0.0959𝜇𝑀, 0.101𝜇𝑀 and 0.0998𝜇𝑀 

respectively for source influx 2pA. And for source influx 3pA, the 

concentrations observed at time 0.02 seconds at the nodes 2,3,4 and 5 

are 0.1312𝜇𝑀, 0.0938𝜇𝑀, 0.1015𝜇𝑀 and 0.0997𝜇𝑀 respectively. 

Similarly, the concentrations observed at time 0.03 seconds are 

0.1209𝜇𝑀, 0.0961𝜇𝑀, 0.1011𝜇𝑀 and 0.0999𝜇𝑀 for source influx 

1pA, the concentrations observed for source influx 2pA are 0.1417𝜇𝑀, 

0.0919𝜇𝑀, 0.102𝜇𝑀 and 0.0997𝜇𝑀 and the concentrations observed 

for source influx 3pA are 0.1624𝜇𝑀, 0.0877𝜇𝑀, 0.1029𝜇𝑀 and 

0.0995𝜇𝑀. It has been observed that the concentration of calcium 

increases in ratio with source influxes. As time increases from 0 to 0.05 

seconds, oscillations are seen in the calcium concentrations near to the 

source. It is further observed that as we further move away from the 

source from node 2 to node 4 these oscillations also increase in ratio 

with source influxes. If we move further away from the source these 

oscillations vanish as background concentration 0.01 𝜇𝑀 achieved.  

 

Figure – 5(a): Calcium concentration with advection at different time 

for excess buffer 70 𝜇𝑀 

 

Figure – 5(b) : Calcium concentration with advection at different time 

for excess buffer 140 𝜇𝑀 
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Figure – 5(c) : Calcium concentration with advection at different time 

for excess buffer 210 𝜇𝑀 

In figures 5(a), 5(b) and 5(c), the calcium concentration by considering 

different time and buffer concentrations 70𝜇𝑀, 140𝜇𝑀 and 210𝜇𝑀 are 

shown in the presence of advection. Initially at time t=0 seconds, 

0.1 𝜇𝑀 calcium concentration is observed due to the initial boundary 

condition, then at time 0.01 seconds the concentration obtains the peak 

value 0.7487 𝜇𝑀. Then the sharp fall is observed in the concentrations 

at time 0.02 seconds at the nodes 2,3,4 and 5 which are 0.1104𝜇𝑀, 

0.098𝜇𝑀, 0.1005𝜇𝑀 and 0.0999𝜇𝑀 respectively for buffer 

concentration 70𝜇𝑀. The concentrations observed at time 0.02 seconds 

at the nodes 2,3,4 and 5 are 0.1104𝜇𝑀, 0.098𝜇𝑀, 0.1005𝜇𝑀 and 

0.0999𝜇𝑀 respectively for buffer concentration 70𝜇𝑀. The 

concentrations observed at time 0.02 seconds at the nodes 2,3,4 and 5 

are 0.1104𝜇𝑀, 0.098 𝜇𝑀, 0.1005𝜇𝑀 and 0.0999𝜇𝑀 respectively for 

buffer concentration 140𝜇𝑀. And for buffer concentration 210𝜇𝑀, the 

concentrations observed at time 0.02 seconds at the nodes 2,3,4 and 5 

are 0.1103𝜇𝑀, 0.098𝜇𝑀, 0.1005𝜇𝑀 and 0.0999𝜇𝑀 respectively. 

Similarly, the concentrations observed at time 0.03 seconds are 

0.1209𝜇𝑀, 0.0961𝜇𝑀, 0.1011𝜇𝑀 and 0.0999𝜇𝑀 for buffer 

concentration 70𝜇𝑀, the concentrations observed are 0.1207𝜇𝑀, 

0.0961𝜇𝑀, 0.101𝜇𝑀 and 0.0999𝜇𝑀 for buffer concentration 140𝜇𝑀 

and the concentrations observed are 0.1205𝜇𝑀, 0.0961𝜇𝑀, 0.101𝜇𝑀 

and 0.0999𝜇𝑀 for buffer concentration 210𝜇𝑀. It has been observed 

that the concentration of calcium decreases in small ratio with buffer 

concentrations. As time increases from 0 to 0.05 seconds, oscillations 

are seen in the calcium concentration. It is further observed that as we 

move little away from the source from node 2 to node 4 these 

oscillations also decrease in ratio with buffer concentrations. If we 

move further away from the source these oscillations vanish as 

background concentration 0.01𝜇𝑀 achieved.   

 

IV. CONCLUSION 

       The individual and coordinated effects of advection, source influx, 

buffering and diffusion on calcium ions in cardiac myocytes cells are 

studied using finite element model in calcium dynamics. From the 

study and results it is observed that, at the source the highest 

concentration of calcium is observed in absence and presence of 

advection. Then as we move away from the source the concentrations 

falls sharply in absence and presence of advection. This sharp fall is 

observed due to buffering process. If we move far away from the 

source the background concentration is achieved. It has been also 

observed due to advection the concentration of calcium increases. 

Further the oscillations are also observed in presence of advection as 

time increases. These oscillations are observed more near the source 

and when we move away from the source the oscillations decrease. 

These oscillations increase in ration of source influx as more free 

calcium ions are available. It is also observed that the oscillations 

decreases in the ration of buffer concentrations as less free calcium 

ions are available. From the study it is concluded that advection play a 

critical role for the higher values of source influx and play limited role 

for the higher values of buffer concentration for reducing calcium 

concentration. 

V. DATA AVAILABLITY STATEMENT 

In this study, authors have not created or analysed new data. 
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